Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B.

نویسندگان

  • Haigang Li
  • Yanwen Lin
  • Yunbai Luo
  • Ping Yu
  • Liwei Hou
چکیده

Dyes fouling of reverse osmosis (RO) membranes and its relation to adsorption had been investigated by using a crossflow RO filtration setup. Methylene blue (MB) and rhodamine B (RB) were used as model organic foulants. The calculated amount of the irreversible sorption was related to the irreversible flux decline. The characteristic fouling kinetics was accounted by Langmuir-Hinshelwood (L-H) kinetics model for initial fouling, with the fouling rate constant k=0.0556μm s(-1)min(-1) and k=0.0181μm s(-1)min(-1) for MB and RB fouling RO membrane CPA2, respectively. And the subsequent fouling was attributed to the growth of a dye cake. A remarkable correlation was obtained between the quantified irreversible sorption and irreversible flux decline under the solution chemistries investigated. In the presence of divalent cation, the extent of flux decline was related to the competition model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents.

The adsorption of dissolved organic matter (DOM) on granular-activated carbon (GAC) as a pretreatment to reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents was studied in lab- and pilot-scale columns. The pattern and efficiency of DOM adsorption and fate of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions were characterized, as well as their impact ...

متن کامل

Mechanisms Involved in Osmotic Backwashing of Fouled Forward Osmosis (FO) Membranes

Organic matter leads to one of the biggest problems in membranes: fouling. Developing efficient cleaning processes is therefore crucial. This study systematically examines how alginic acid fouling formed under different physical and chemical conditions affect osmotic backwashing cleaning efficiency in forward osmosis (FO). The fouling layer thickness before and after osmotic backwashing was mea...

متن کامل

Advanced Dynamic Simulation of Membrane Desalination Modules Accounting for Organic Fouling

A reliable dynamic simulator (based on a sound process model) is highly desirable for optimizing the performance of individual membrane modules and of entire desalination plants. This paper reports on progress toward development of a comprehensive model of the complicated physical-chemical processes occurring in spiral wound membrane (SWM) modules, that accounts for the...

متن کامل

Application of Nanofiltration/Reverse Osmosis Membranes to Textile Effluents Aiming its Reclamation and Reuse: Influence of Operating Conditions

Please cite this article as: Barredo-Damas S., Alcaina-Miranda M. I., Iborra-Clar M. I. and Mendoza-Roca J. A., (2010), Application of nanofiltration/reverse osmosis membranes to textile effluents aiming its reclamation and reuse: influence of operating conditions, Chemical Engineering Transactions, 21, 1027-1032 DOI: 10.3303/CET1021172 Application of Nanofiltration/Reverse Osmosis Membranes to...

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 192 2  شماره 

صفحات  -

تاریخ انتشار 2011